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Using topological statistics to detect determinism in time series
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Statistical differentiability of the measure along the reconstructed trajectory is a good candidate to quantify
determinism in time series. The procedure is based upon a formula that explicitly shows the sensitivity of the
measure to stochasticity. Numerical results for partially surrogated time series and series derived from several
stochastic models, illustrate the usefulness of the method proposed here. The method is shown to work also for
high—dimensional systems and experimental time series.

PACS numbgs): 05.45-a, 02.30.Cj, 07.05.Kf

I. INTRODUCTION This is a general result of dissipative systems, regardless of
its application to time series analysis. The second one is the
This paper deals with the problem of determining whethewuse of statistics for analyzing mathematical properfis],

the complex behavior of a single time series may be exwhich allow us to test the differentiability of the measure in
plained in terms of a deterministic or a stochastic dynamicaf Statistical sense. In this way we can extend our methods to
system. Although the idea was present from the very firsgignal analysis. _
days of the nonlinear time series analykld, methods ex- ~ The procedure is based upon a formula that will be de-
plicitly aiming to detect determinism in time seri¢g—5] rived in Sec. Il, and that will allow us to discriminate be-
have only been published rather recently. The fact that noisBveen deterministic and stochastic behaviors. This problem
can mimic or mask deterministi@.g., chaotit behavior in ~ Was tackled by us if14], whereas the basic idea of the
classical measures of chadisyapunov exponentsK, en- ~ Methodology was proposed i5,16]. _ _
tropy and correlation dimensidpfi6—8] has urged the need The paper is organized as follows. Section Il is devoted to

for more specific methods to discriminate deterministic fromthe mathematical background of our approach. At the end of
stochastic behavior. the section we have included a brief summary of the con-

Measures and vector field§], densities and trajectories CePts introduced in_ this section. This is addre_ssed to the less
[10], metric and topologicdll1], statistical and geometrical, inclined mathematical reader, which can skip most of the
these are, roughly speaking, different terms used to denommathematlcal details given in the section. In Sec. Il A we
nate the two broad approaches for investigating the chaotittroduce the fundamentals of our approach. The extension
behavior of dynamical systems. It is a remarkable fact that0 Stochastic dynamics is considered in Sec. Il B. General
most of the aforementioned methods to detect determinisfiONcepts about measure projections and time series are ex-
are based in the study of trajectories or vector fields. ConPlained in Sec. Il C, whereas Sec. Il D is devoted to a brief
sidering the noisy character of the inverse problem of timediscussion of the statistics of topological properties used in
series analysi¢from the point of view of nonlinear dynam- th|§ work. Section Il is devoted to dlscussmg the models to
ics), the statistical approach must lie at the heart of any prowhich we apply our method and the numerical procedures
posed methodology. This becomes relevant as soon as tfflowed in each case. We also propose a variant of the sur-
system underlying a time series is “excited” beyond therogation method, partial surrogation, as a way to tune the
simple bifurcations, so that the geometrical informationdegree of stochasticity. The results are presented in Sec. IV.
about the shape of the attractor, or the motion on it, is nol he sensitivity of the time derivative of the measure to sto-
longer available. This is also true in the case of a stochastighasticity, the dependence of the results on the embedding
dynamical system, where noise can make it impossible télimension, and the application of our approach to mixed
reconstruct the geometrical informatipt2]. Moreover, tra- time series are iIIustr_ated on the models dis_,cussed i_n Sec. !II.
jectories and the geometry of the flown the attractor are We also present a simple test on an experimental time series
well defined in the case of a deterministic system, in contrasike the Belousov—-Zhabotinski chemical reaction.
to the case of a stochastic dynamics.

Bearing that in mind, we have developed a novel ap-
proach based on the study of the differentiability of the natu-
ral measure. The statistical character of our methodology is Here we discuss in detail the mathematical background of
twofold. The first one concerns the use of the natioal our method. The natural measure is first defined and the
physica) measure. Differentiability of this invariant measure equation of motion that it obeys explicitly given. Then we
will be considered in the direction of the evolution, that is, show how stochasticity triggerswild behavior of the time
along any typical trajectory. In this way, “smoothness” of derivative of the natural measure. This is the feature upon
the trajectoryand measure are considered in a single stepwhich our proposal is based. In order to evaluate quantita-

Il. THEORETICAL APPROACH
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tively this behavior we borrow the method proposed by
Pecora, Carroll, and HeadyL3]. In particular we evaluate
(statistically the continuity of the logarithmic derivative of
the natural measure. Those readers more interested in appli-
cations may go directly to Sec. Il E where the most impor-
tant features of the method are highlighted with the aid of the
equations discussed hereafter.

A. The natural invariant measure along the trajectory

Consider a dissipative dynamical system described by

n-first-order differential equations=F(x). The correspond-
ing flow f' maps a “typical” initial conditionx, into x(t)
=f'(xo) at timet. Once transients are over, the motion
settles over the attractot.

Given such a system, we can define a probability space
(measure spacd.A,B, 1), whereB is the o algebra gener-
ated by the open sets of the invariant skt and u is an
invariant measure defined over the subset€3asuch that
n:B—(0,1).

Of all the invariant measures which can be defined, only
one is relevant from the point of view of the experimentalist
or in computer simulations. This is theatural invariant
measure, which gives the limiting distribution of almost all
starting initial conditions. Using the indicator function
1g(y)=1, if ye B, and 0 otherwise, we can define this mea-
sure for a seB.(x) ={y:d(x,y)<e€} as

FIG. 1. lllustrates two alternative evolutions in dissipative sys-
tems: Liouvillian evolution (uppe) and Lagrangian evolution

1
im?J'tlB(fT(yo))dr (lower).

m(B(x)=1
t 0

xe A in two linear subspaces; stable and unstable. It is also
ossible to define a measure in these systems, known as a
inai—Ruelle—BowetiSRB) which have the property of be-
ing smooth along the unstable manifd®], due fundamen-
w(B.(x)=u(f7(B(X)). tally to the stretching of the trajectories. On the other side, it
is expected to have a wild behavior along the stable direc-
In the present case what we calculatg {8.(x(t)) along the  tion. In the present case, considering that E).only in-
trajectory. This means that the evolution operator changegolves derivatives along the trajectory and that in this direc-
the point at which the setB, is centered, namely, tion no expansion or compression of the flux occltse
n(B(f7(x))), leaving unchanged the ball,. This is the associated Lyapunov exponent is equal to fem@ expect a
so—called Lagrangian evolutioisee Fig. 1, that has to be smooth behavior of the measure.
distinguished from the Liouvillian evolutionuw(B(x(t))

for almost allyy in the basin of attraction. The so-defined
measure is invariant in the sense that it remains consta
upon application of the evolution operatbf,

—f7(u(B(x(t)), which contracts the volume along the tra- B. Stochastic dynamics
jectory, as illustrated in Fig. 1. i L .
Calling w(x(t))= w(B.(x(1))), the “material derivative” _Cons@(_ar now a stocha;tlc d|SS|pat|ve dynamlcal s_ystem
of the natural measure can be expressed as with a_lddltlve noise, described bwg-first-order differential
equations
du(x(t)) . )
—a X @ x=F(x)+ nG(t), 3
or wheren>0 is a small numbemoise intensityandG(t) is a
vector of independently and identically distributed random
du(x(t)) Gaussian variables, of zero mean and correlations
gt V(R -kV-F @ (G/(1)G(t"))=5,;8(t—t"). A physical system will nor-

mally have a small level of random noise, so that it can be
Equation(2) only involves partial derivatives gi(x(t))  considered a stochastic process rather than a deterministic
along the trajectory, and since each trajectory in the attractasne. In a computer study, roundoff errors should play the
is contained in the supporj(x(t)) is smooth along any role of the random noise. For suitable noise apdhe sto-
trajectory, and is therefore well defined. It is known that forchastic time evolution, Eq3), has a unique stationary mea-
axiom A systems, hyperbolic and with a dense set of periodisure w [9]. This is thenatural (or physica) invariant mea-
orbits, it is possible to decompose the tangent bundle at eacure defined above.
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Inserting Eq.(3) in to Eq. (1) Original Space (A,B,1)
du(x(t ¢’
$=[F+ 7G(1)]- V. 4 / o S~
0 1 S VAVAY
Whenever the vector fiel#(x) can be expressed &x)= — ¢=¢" ¢’ Time Series

- Vo(x)+1(x), with f(x) being orthogonal to the gradient ”

¢
term and having no divergence, the measure is given by M /
B(x)
> |

m(x)=N ex;{ - . ©) Reconstructed Space (AB, U o)

] ] ) ] FIG. 2. Scheme followed to analyze a dynamical system and to
Then, introducing Eq(5) in to Eq. (4) we arrive at calculate the natural measyte, on the reconstructed space.

dlIn p(x(1))] _ i 6) tractor. However, as shown 22,23, when dealing with
dt 7 ' functions of the measure, embedding dimensions greater
than the correlation dimension are enough.

In Sec. Il A we discussed the smoothness of the measure From the statistical point of view, we must ask how the
along the trajectory for a deterministic system, at least in thembedding process in the measure spagé) is associated
case where there exists a SRB measure. In the present cagfth the attractorA. That is, if u is a measure ifR" and
that is, a stochastic process, it is possible to define a uniqug:;:"— %™ is a function, we will have a projected -
stationary measure that will tend to the SRB #p+0. This  duced measurew,. = ¢(u) over a subsetSe ®R™, where
is the Kolmogorov measurg9]. At each time step of the ¢(,u)(S)=,u(¢‘1(S)). This is important because we are ac-
evolution, we add some noigef amplituder). If we repeat  tually transforming the measure in the embedding process.
these operationgevolving by time evolution and putting Most of the existing literature is related to projections and
some noisgagain and again then we will get an invariant reconstructions of the invariants sets and the dimensions of
measure which is smooth along the unstable direction. Thighe corresponding probability measuf@4—2§. In our case,
is because the deterministic part of the time evolution willif 4, is the physical measure describing the original system
improve the continuity of the density in the unstable direc-( is carried by an attractor in phase spatteen the points
tion by stretching, and roughening it in the other directionsin the reconstructed space are equidistributed with respect to
due to contraction. Thus, in the zero-noise lijit-0 we  the projected measurg. [9] (except for particular cases
will get a measurgu that satisfies SRB conditions. avoided explicitly by the embedding theorefid]). This is

Equation(6) provides an alternative tool to investigate the 3 sufficient condition that allows us to extract information
findings of [4], according to which smoothness in phaseabout the original system working in its corresponding pro-
space implies determinism in the time series. For weak noisgction.
levels, the first term of the right hand side of E®) is If we have a time series, we can construct an
dominant over the second term. In this case, smoothness if-dimensional vector
phase space implies “continuity” in the left hand side of Eq.

(6), or differentiability of the measure along the trajectory. Xi= (X Kisrs - - Xi+(m=1)-7)

On the other hand, in the case of strong noise levels, the

second term is the dominant one and a wild behavior in thevhere 7 is the time delay, chosen by one of the standard
measure must be expected. This is so because the vectoethodd8]. Then, from a single set of observations, multi-
G(t) is uncorrelated with the actual position in the phasevariate vectors irm-dimensional space are used to trace out
space. Although Eq6) was derived for a vector field obey- the orbits of the system. Figure 2 shows the concept of the
ing some restrictionssee abovg our numerical results indi- reconstruction method. Explicitly shown is the reconstruc-
cate that it can be applied to more general systems. tion of the measure carried by the attractoy.

1
(;|F(X)|2+G(t)'F(X)

C. Time series and measure projection D. Statistics of topological properties

In the case where dynamical invariants are to be estimated Taken’s theoren{19], and its sequels, give a rigorous
from the knowledge of a single observable, we can rely upoiustification for state space reconstruction. The essence of the
Takens’ Delay Coordinate Map TheordB]. According to  mathematical proof is that the trajectory formed from the
it, the structure of the attractgincluding differential infor-  time series is diffeomorphically related to the actual phase-
mation can be preserved by using delay coordinate mapspace trajectory of the dynamical system. In order to test the
[20], as long as the embedding dimensiars large enough mathematical properties embodied in the diffeomorfism, that
to fully unfold the attractor structure. Furthermore, the Frac-s, continuity, differentiability, inverse differentiability and
tal Whitney Embedding Prevalence Theor¢®i] tells us injectivity, Pecora, Carroll, and Head¥3] have developed a
that almost every smooth map will be an embeddioge- set of statistics intended to test quantitatively these proper-
to-one and differential structure preservingrovided that ties. Their algorithms are of general use and can in particular
m>2D, whereD is the box-counting dimension of the at- be applied to test topological properties in any pair of sets of



3422 GUILLERMO J. ORTEGA AND ENRIQUE LOUIS PRE 62

points. We will take advantage of this procedure by imple-natural measujeas a way to evaluate the the degree of noise
menting the aforementioned algorithms to test numericallyin the system. Our proposal is based upon (Bg.This equa-
the continuity of the logarithmic derivative of the measuretion tells us that the amount of noise present in the system is
along the trajectory. Basically, the method is intended tadirectly related to the differentiability of the natural measure,
evaluate, in terms of probability or confidence levels,evaluated along a typical trajectory. The noisier the system is
whether two data sets are related by a mapping having thihe less differentiable it becomes. It remains a question of
continuity property: A functiorf is said to be continuous at a how to apply a fundamental analysis concept, like differen-
point x, if Ve>0, 35>0 such that||x—x.|<é=|f(x) tiability, to a magnitude defined numerically. The “topologi-
—f(xo)|<e. The results are tested against the null hypoth-cal statistics” tools developed by Pecora, Carroll, and Heagy
esis, specifically, the case in which no functional relation[13] were helpful. They were devised to evaluate in a statis-
between points along the trajectory and the measure existical fashion topological properties of functions. Equatih
This is done by means of the statistics proposed by Pecorég the statistics used to test, against the null hypothesis, the
Carroll, and Heagy13] degree of continuity of our function. As long as this statistic
| approaches unity we are confident that we have a continuous
1 &K . function. We should note that we have evaluated the conti-
Bco(e)= n. ,Zl Oco(e]) (7 nuity of the numerical derivative of the measure, which is
P equivalent to test differentiability, a computationally easier
and procedure. Continuity is directly related to the resolution
with which we are looking at the function, that és so the
p; statistics is actually dependen® co(€). In order to provide
8 us with an overall continuity test, we summed up over the
whole range of obtaining a single parametéi{see Eq(9)]
which we use hereafter to characterize continuity.

Oco(e,j)=1—

pmax

wherep; is the probability that all of the points in theset,
around the pointx;ex(t), fall in the e set around
dIn u(x;)/dt. The likelinood that this will happen must be Ill. MODELS AND NUMERICAL PROCEDURES

relative to the most likely event under the null hypothesis, are e discuss the various stochastic dynamical systems
Pmax (S€€[13]). When®co(e,j)~1 we can confidently re- 5 \yhich we have investigated the efficiency of our ap-
ject the null hypothesis, and assume that there exists a Cojtach The numerical procedures followed fo reconstruct
tinuous function. As in the work of Pecora, Carroll, and ye space from time series related to some of the coordinates
Heagy[13] the e scale is relative to the standard deviation of ¢ 556 models and to evaluate the statistical differentiabil-
the density time series, and thusz[0,1]. Plots 0f®co(€) iy of the natural measure are also described. We also discuss
vs e can be used to quantify the degree of statistical contiy'\ariant of the surrogation process which consists of pro-

nu?ty of a g?ven function. In ord_er to characterize the Cont"ducing a partially surrogate series. The method is a way to
nuity statistics by means of a single parameter we have alsx?ary the degree of stochasticity of the time series.
calculated

A. The stochastic Van der Pol oscillator

1
0= fo Oco(e)de. 9) The simplest case in which we can apply our ideas is in a
nonlinear oscillator. We have used the Van der RaP)

The limiting values ofg, namely, 0 and 1, correspond to a ©Scillator[27] with an additive stochastic term

strongly discontinuous and a fully continuous function, re- -
spectively. x=y+nGa,
. , (10
E. Summary y==(X=1y=x+nG,.
A naive test to quantify noise in signals is to check howThe parametem represents the noise level, a@j(t) are
smooth they are. As long as more noise contaminates thgncorrelated Gaussian noises, such Gaft) e normalOo,
signal, the more discontinuous it will become. This is theo), zero mean and standard deviation Without loss of
case for example of additive noise, e.g., noise added to thgenerality we takep=1, and tune the degree of noise only
signal. However, this is by no means a general rule. Foby the standard deviatioa.
instance, intrinsic noise, that is, noise added in the equation Numerical integration was carried out by means of an
of motion, is not expected to affect the smoothness of théculer algorithm. 20000 data points have been generated. Us-
signal. This can be clearly seen in the case of surrogate timieg the x coordinate as our “experimental” time series, we
series: two time serie@he original series and its surrogate have made a reconstruction with an embedding dimension in
having the same correlation structure, may have very differthe range 2—20, and alag of 10(in sampling units Every
ent underlying dynamics, i.e., one deterministic and the othereconstruction has been rescaled to the unit hyper-square.
stochastic. We can overcome the above drawback by using Density time series have been obtained for each recon-
the trajectory of the system, instead of a single variablestruction. Starting with the first point in the reconstructed
Smoothness or continuity of the trajectory in phase space hgshase space, we follow the trajectory recording the density of
been used befol@] in this context. What we propose here is points around each of the trajectory’s points. In order to es-
to use the distribution of points on the trajectaigr the timate this density, we have used the Epanechnikov kernel
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FIG. 3. Typical records of the coordinatecontinuous lingand
of the natural measurg@roken ling time series(in arbitrary unit$
from the x coordinate of the Van der Pol oscillator. The results
correspond to the parameters given in the text whithout stochastic
term, and an embedding dimension of 4.
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FIG. 4. lllustrates the differences between using a coordinate or
the time derivative of the natural measure in the evaluation of the
[28], which, roughly speaking,“weighs” the points accord- continuity statistics. The results correspond to the Lorenz system
ing to its distance to the center. This is preferable to thawithout noise:(a) x coordinate(broken ling and its 100% surrogate
Gaussian kernel, which is of infinite suppdgand therefore (continuous ling (b) derivative of the reconstructed natural mea-
has a lower computational efficienicgnd the “square” ker- sure (broken Iipe from.thex coordinate and from th& surrogate
nel which gives equal status to the different points in the balfurrogatecontinuous ling
around the reference point. A parameter that has to be chosen

carefully is the ball radius used to estimate the density. If the y=—y+rx—xz+ 7G,,

radius is too small, the low density regions will be practically (11)
depopulated and the measure will be underestimated. On the i

other hand, if the radius is too big, the estimation will cap- z=—bz+Xy+ 7Gs.

ture points which are not really part of the neighborhood of

the reference point. Of course, the ball radius is a function ofrpe parameters used in the calculations a&e;10.0, r

the data points being used in the reconstruction process andsg o y,b=2.66, which give chaotic behavior in the case
must be chosen according to this fact. We have used a radiq;ZO_ G(t) and  were defined above. When not specified
of the ball of 5% of the total attractor extent. In evaluating ine results for the Lorenz system discussed in the following
the continuity statistics, we avera@kco(e,j) overn, points  section were obtained for an embedding dimension of 3,
[see Eq(6)] randomly distributed in the trajectory, typically yhich is greater than the correlation dimension of the Lorenz
10% of the total record. system.

Figure 3 shows a typical density time series from e ~ Nymerical integration of the Lorenz system was carried
coordinate of the VdP oscillator. Albeit qualitative, the gyt by means of the Euler method. The time integration step
smooth behavior of this density along the trajectory is readil{yas 0.01. Time series with 16 384 data points and their re-
noted. spective surrogates were subsequently generated. The recon-
struction was performed by the usual time—delay method
[19-21], with a time delay given by the first zero of the
autocorrelation estimat@l0 in units of the integration step

The VdP oscillator will allow us to get a closer look at the on an embedded phase space of dimension 3. The natural
procedure we are implementing. However, a nonlinear oscilmeasureu(x(t)) along the trajectory was calculated by
lator is a somewhat trivial example and we want to apply theneans of the Epanechnikov kernel density estim@2a]
method to more complicated cases. In fact, the ultimate obwith an sphere of radius 5% of the attractor extent. As in the
jective of the methodology is to discriminate random behav-VdP oscillator the continuity statistics was evaluated includ-
ior from a deterministic one, and this is specially importanting up to 10% of the points in a given record.
in the case of chaotic behavior. The sensitivity of the time derivative of the measure to

The Lorenz systemi29] with an additive stochastic term stochasticity is illustrated in Fig. 4. This figure shows that
is an adequate choice. The related system of differentialvhereas the surrogate of tixecoordinate time series is as
equations can be written as “smooth” as the original series, the time derivative of the

. logarithm of the measure is much more spiked in the surro-
X=—sx+sy+ Gy, gate than in the original series.

B. The stochastic Lorenz system
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C. The Mackey-Glass model 1.0
In order to investigate the effects of the embedding di- 0.8 i
mension we have also considered the high dimensional sys-
tem introduced i 30]. The dynamical system is described 0.6 .
by means of the following delay—differential equation: O®UO4
X=M—bx(t). (12 0.2 :
1+x(t—6)°
0.0
This equation has been proposed to model nonlinear feed- 1.0 .
back control in physiology. We use the set of parameters that
gives an attractor dimension 6£7.5 [2], namely,a=0.2, 08 1
b=0.1,c=10, andé=100. The resulting time series were 06 - i
analyzed with a time delay given by the first zero of the °y
autocorrelation estimate, and the measure was evaluated on @ o4t ~
spheres of radius 10% of the attractor extent and the conti-
nuity statistics with 10% of the points in the total record. 02 - 1
D. Partial surrogation 0.0001 0.0010 0.0100 0.1000 1.0000

. . . . £
The surrogation process is a well established method in

the context of nonlinear time series analyj§4,32. In typi- FIG. 5. Van der Pol oscillator: continuity statisticsee Eq(7)]

cal applications a single time series is available. From thigor the x coordinate(lower frame and for the time derivative of the
time series, an ensemble of the so-called surrogate series areasure along the trajectory obtained from ttmpordinate(upper
generated that mimic certain properties of the original. Fofframe). Results for the deterministic systebroken curvegand the
example, by simply scrambling the temporal order of thestochastic system withr=0.06 (continuous curvesare shown.
points in the original, one obtain surrogate time series which

preserve the mean, variance, etc. One of the most populdine continuity statistics over the density and the coordinates,
methods of producing surrogate time series consists of shubut this deserve further research, and eventually will be pub-
fling the phases in the Fourier transform of the original datdished elsewhere.

set[31]. In this way, each value of the Fourier transform of  The results for the continuity statistics of the time deriva-
the original data is multiplied by a random phase égp( tive of the reconstructed measure from theoordinate of
with ¢ e random[0,27]. (In order to get a real time series the Lorenz system are illustrated in Fig. 6. The results of Fig.
in the antitransformation we multiply symmetrically with re- 6(a) show that the time derivative of the measure in the origi-
spect to the center of the transfojrithe procedure generates nal series is “more continuouslin a statistical sengehan

a new time series with the autocorrelation structure of the

original. Here we propose to introduce an additional factor, 1.0 — ; e
exp(¢a), with a [ 0,1]. This factor allows us to control the 08 | - A ooordinate 7
degree of stochasticity by tuning the parameter ) — 100% S
o 0.6 | — 10%+100% /, -
IV. RESULTS ® 04 | ]
A. Sensitivity of the time derivative of the measure to 02 | @ 1
stochasticity i
In order to test the efficiency of the approach proposed 1.0 , ,
here we have first evaluated the continuity statistics either on — =
a coordinate or on the time derivative of the natural measure 0.8  ---- n=3,0=3 / 7
time series of the stochastic VdP oscillator. Figure 5 shows 0.6 [~ 100% .
the continuity statistics for the coordinate and for the time o ;o
derivative of the reconstructed natural measure with and @ 04 ¢ S
without noise. There is almost no modification in the statis- 02 & //// ) 1
tics of the coordinate upon noise addition. However, the sta- A

tistics of the density time series reflects very clearly the pres- ‘
ence of the stochastic term. This illustrates the efficiency and 0.001 0.010 0'1.00 1.000
novelty of our approach and supports its application to more €

complex cases. We must remark that we are using the com- i 6. Continuity statisticisee Eq(7)] for the time derivative
monly named “dynamical” noise, that is, a stochastic termef the measure along the reconstructed trajectory fromxtbeor-
added in the dynamical equations, instead of the “measureginate of the Lorenz systerfa) Results for the original time series,
ment” noise, which is added after the “clean” integration and for the series partiall{l0%) or totally surrogated100%), and
step. Preliminary results shows that an efficient method t@ combination of both(b) Results for the Lorenz system with noise
discriminate both types of noise, can be achieved by usinfsee Eq(8)] and for its surrogate series.
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FIG. 7. Integral of the continuity statistifas defined in Eq(8)] 0.2
for time series derived from the Lorenz system. The results corre- 0.0 ' : :
spond to:(a) partially randomized series with increasing degree 2 4 ) 6 ) 8. 10
(percentage of randomization andb) stochastic Lorenz system Embedding Dimension

with increasing standard deviation of the Gaussian noise i(&qg. FIG. 8. Integral of the continuity statistidsee Eq.(8)] as a

its surrogate. Partial surrogati¢h0%) decreases the degree function of the embedding dimension for time seriéBed sym-

of continuity of the time derivative of the measure in an Pel9, and their surrogateempty symbols derived from:(a) the
extent lower than total surrogation, as expected. On the othéfPrenz system andb) the high—dimensional system proposed in
hand, the results show that the continuity of the totally sur 30]. The error bars in the results for the surrogate series account
rogated series shows almost no dependence on whether it hi5 2/erages over five realizations.

been derived from the original series or from a partially sur- L
rogated serie$10% surrogated for m>7 the behavior is similar to that of the Lorenz system,

The results for the stochastic Lorenz system reported il’rfllthOUQh the d?fference b_etween the origi_nal a_nd the surro-
Fig. 6(b) clearly show that the stochastic terms Significantlygated reco.rds is sub;tanhally smaller. This points to further
decrease the statistical continuity of the time derivative ofStug.y thatés.”acttuaily n:hpr(()jgress(.j fth tinuitv st
the measure. Surrogation of the stochastic series produce igtiég%rfethelr;jzz;saufz onethsg(rer?b:ggii 0 dimeer?qnflrr“#wz sta-
further decrease of continuity, indicating that the series stil . . . 9 o
has some degree of determinism. The degree of stochastici%%mhasnc.VdP oscillator. In this case the simplicity .Of the
of a time series can be quantified by calculating the integraortr\?::mlgxensofsr; alg]\;glsg nVL\J/”hgﬁptigdﬁgics?mi?znr:;?er;g:g the
of the continuity statistics as defined in E§). Figure 1a) y oW no: o .
shows how steeply decreases with the percentage of syr-0€havior is in line with that found in the Lorenz system,
rogation. Similarly,6 decreases with the standard deviationnamely’ a decrease @fasm increases. This dependence on

. L : : m is more noticeable the greater the noise level.
of the Gaussian noise in the stochastic Lorenz syg$teim L -
7(b)], as expected. Thus, the magnitudecan be used to The study of the dependence of the continuity statistics of

; L ; tpe measure derivative on the embedding dimension involves
evaluate the relative stochasticities of a set of experimenta . e
numerical difficulties that deserve some comments. In the

time series. case of low enough embedding dimension and moderate
B. Dependence on the embedding dimension 1.0 . ‘ ‘ ‘ ‘ ‘ ‘

A point of crucial relevance is how the above results '{;Bﬂ R B e
change with the embedding dimension We have investi- 0.8 57‘ B "o . i
gated this question on the Lorenz system and on the high— ’ Y H\E ‘”“-\_
dimensional system discussed in Sec. II[3]. The results a e
for the Lorenz system depicted in FigaB show thaté de- 0.6 “a ﬂ\g\ﬂ
creases with the embedding dimension. This is a conse- o A Bﬂ
guence of working with a fixed sphere radius forraland of 04 | \L\‘x ; E“\;\E |
the numerical noise that should increase with The de- ) S Teg
crease off is stronger in the surrogate series, although it is \"“\1\1\‘4,‘
likely that the difference between the two should decrease 02 - .
for large enoughm. In any case, the difference thbetween
the original and the surrogate series changes only from 0.35

. . . . 0'0 L I I I I I I
to 0.49 whemm s varied in the range 3—10. The behavior of 2 4 6 8§ 10 12 14 16 18 20

0 in the high—dimensional system is far more intricktee
Fig. 8b)]. Formwell below the attractor dimension the mea-
sure for the surrogate series seems to be more continuous FIG. 9. Integral of the continuity statistidsee Eq.(8)] as a
than that for the original series. The reason for this rather odelinction of the embedding dimension for time series derived from
behavior has to be found in the heavy crossing of trajectoriethe thex coordinate of the Van der Pol oscillator with various
that occur atn far below the attractor dimensid8]. In those  degrees of noiser=0 (filled circles, 0.01 (open circley 0.03
cases, surrogation seems to have a smoothing effect. Instedfilled squares 0.06 (open squargsand 0.09(filled triangles.

Embedding Dimension
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FIG. 10. Measure estimate in the case of a stochastic Van der FIG. 11. Continuity statistics for the time derivative of the mea-

Pol oscilator  coordinate for a embedding dimension of 19, and SU'e corresponding to thecoordinate of the Lorenz system. The
=05, time series was formed by joining the original time se(fast half)

to its fully randomized seriesecond halt

number of data points, the estimation can be achieved con- As another example of the use of our methodology we
fidently for almost all the points in the trajectory. Of course, have investigated the effect of a noise burst in the VdP os-
“moderate” and “long enough” are terms that depend on cillator. The dynamic equations are rewritten as

the attractor dimension. We think that the same criteria fol-

lowed, to get for example a reliable estimation of the corre- x=y+A(t)7Gy,
lation dimensior{ 8], apply in this case. In our approach we (13
have introduced noise explicitly, adding another factor to be y=—(—1)y—x+A(t) 7G,,

considered in the estimation step. As it is well known, as
extra dimensions are included in the (_ambeddlng_ PIOCESSy\here A(t)=1 if t;<t<t, and O otherwise. The interval
noise populates them more or less uniformly. This is spe:

cially problematic in the case of “simple” systems, like the Lt1,tz] is @ small interval where we "turn on” the stochastic
y pro . . P Y3 ; term. The idea behind this system is to test the capabilities of
VdP oscillator, as the trajectory in a stochastic oscillator ma

“ . R %he method to detect the noise introduced. Using 20 000 data
wander” far from the zero-noise limit cycle. In these ex-

cursions, the measure swept by the trajectory is unavoidabl oints, we have used 500 consecutive points with the sto-
' pt by Y YIS Pastic term added. In Fig. 12 we show a typical time series
constant, because no other points are in the neighborhood

the evolution, except those which are time correlated. In suc and the measure time derivavehere noise has been
’ P S aned on in the time interval 10 000—10 500, with a strength
a case, a constant measure results, and thus a high value

the continuity statistics. This effect is more noticeable as th ot 020205' Figure 13 S.hOWS Pecora, Carrall, and. Heagy
. . AR . » TSIB] statistics applied to five regions of the whole series, one
embedding dimension is increased, because “more” space

available(see Fig. 10

1.5 T T T T
C. Application to mixed time series

A distinctive feature of our method is the possibility of
using it in different ranges of a given time series. In this way
we can examine short records and evaluate their stochastic 0.5
ity. Bearing this in mind we have devised the following ex- §
ample: Suppose we have a time series which is half deter3
ministic and half stochastic. Could our method discriminate s 0.0
both behaviors in the same time series?. In order to answes
this question, we have generated a single time s€ti@884 = ~05
pointg with the first half coming from the& coordinate of the )
deterministic Lorenz system, and the second half coming
from its surrogate(100% randomizationtime series. We -1.0
have applied the continuity statistics over four regions in the
time derivative of the density recoftivo randomly selected ‘ . ‘ . .
in the first half and two in the second halFigure 11 shows 9700 9900 10100 10300 10500 10700
the results. It is then clear that the statistics utilized here car
discriminate stochastic from deterministic behavior. Figure
11 also shows the statistic for the whole time sef&ame FIG. 12. x coordinate(broken ling and derivative of the natural
number of reference points randomly selected along the timgeasurgcontinuous ling time series of the Van der Pol oscillator
serie$. The results are midway between those for the stoin which a noisy burst, o&-=0.05 has been introduced in the time
chastic and deterministic ranges. interval 10 000—10 500.

time
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FIG. 13. Continuity statistics for the time series of Fig. 12,

applied to five regions of the series one of which is the stochastic FIG. 14. Continuity statistics for the BZ reaction time series
region (broken ling. The noise intensity is-=0.05. (solid line) and its surrogatébroken ling.

) . ) ) the method is very easily applied to any kind of time series,
of them being the stochastic region. Again, our methocfrom the simplest one, as is the case of limit cycle oscillators,
clearly discriminates between noisy and clean regions.  to the high—dimensional cases. Given a time series, and once
done the standard reconstruction process, obtaining the den-
sity (or its time derivative is a straightforward procedure.
Then, one can use the Pecora, Carroll, and Heagy approach

In order to test our method in actual experimental timeover the whole time series or in selected pieces of it. A
series, we have used the data set from the Belusovwarning against a blind application of the method is in order,
Zhabotinski(BZ) chemical reactiof33]. As shown by those particularly in what concerns the evaluation of the continuity
authors the apparently random behavior of the amplitude off the measure time derivative. A careful inspection of the
the concentration of bromide ions can in fact be explained bylensity time series must be done before any further operation

deterministic laws. We will use here our approach to confirm's performed. o o
the above finding. The dependence of the continuity statistics on the embed-

Using the bromide concentration time series, as in théling dimension in low- and high—dimensional systems, indi-
work of Roux, Simoyi, and Swinne}33] we repeat the pro- cate that applications to reakexperimentgl time series
cedure explained above. We have used=80 (in sampling would eventually require a thorough investigation of this
units) for the reconstruction and an embedding dimension opoint in each particular case, as is common in time series

4. Figure 14 shows the continuity statistics for both the timeanalyS'S' In any case, the fact that the method works reason-

9 ; . —ably well on short time series, supports its usefulness for the
derivative of the reconstructed measure using the BZ tim nalysis of experimental series. We have shown this in a
series and for its 100% surrogate. The large difference bes'imple case as it is the BZ reaction, confirming previous
tween the two and the rather high value@go confirm our findings.
proposal in the sense that one can explain the behavior of |, 3 proader sense, the application of continuity statistics
this record as the output of a deterministic dynamical systemy oy the density time series is a new aspect of the possibili-

ties offered by the Lagrangian measufé$]. As we have
V. CONCLUDING REMARKS shown previously, the use of more traditional tools on this

In brief, we have proposed a method to identify determin-qens'ty’ such as Fourier transforms or histograms, may help

ism in time series, which exploits the continuity of the Ioga—In extracting new information on the underlying dynamical
rithmic time derivative of the natural measure along the tra SYyStem.
jectory, that is, its differentiability. The method is based

upon a formula which explicitly shows the sensitivity of the
measure to stochasticity. In the present work we have Thanks are due to E. Hemdez, M. SanMiguel, and R.
adapted the statistical method of Pecora, Carroll, and Heagyoral for many useful comments and suggestions. This work
[13] to investigate the continuity of the time derivative of the was supported by grants of the spanish CICiGrant No.
measure. Results of partially surrogated series and series deB96—008%5 the European TMR Network-Fractals c.n.
rived from two stochastic dynamical systems and a high-FMRXCT980183, and of the Universidad Nacional de
dimensional system, clearly illustrate the suitability of theQuilmes. G. Ortega is a member of CONICET Argentina and
present method to the problem at hand. As we have showmlso thanks the “Generalitat Valenciana” for support.

D. Application to experimental time series
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