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Using topological statistics to detect determinism in time series
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Statistical differentiability of the measure along the reconstructed trajectory is a good candidate to quantify
determinism in time series. The procedure is based upon a formula that explicitly shows the sensitivity of the
measure to stochasticity. Numerical results for partially surrogated time series and series derived from several
stochastic models, illustrate the usefulness of the method proposed here. The method is shown to work also for
high–dimensional systems and experimental time series.

PACS number~s!: 05.45.2a, 02.30.Cj, 07.05.Kf
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I. INTRODUCTION

This paper deals with the problem of determining whet
the complex behavior of a single time series may be
plained in terms of a deterministic or a stochastic dynam
system. Although the idea was present from the very fi
days of the nonlinear time series analysis@1#, methods ex-
plicitly aiming to detect determinism in time series@2–5#
have only been published rather recently. The fact that n
can mimic or mask deterministic~e.g., chaotic! behavior in
classical measures of chaos~Lyapunov exponents,K2 en-
tropy and correlation dimension! @6–8# has urged the nee
for more specific methods to discriminate deterministic fro
stochastic behavior.

Measures and vector fields@9#, densities and trajectorie
@10#, metric and topological@11#, statistical and geometrica
these are, roughly speaking, different terms used to deno
nate the two broad approaches for investigating the cha
behavior of dynamical systems. It is a remarkable fact t
most of the aforementioned methods to detect determin
are based in the study of trajectories or vector fields. C
sidering the noisy character of the inverse problem of ti
series analysis~from the point of view of nonlinear dynam
ics!, the statistical approach must lie at the heart of any p
posed methodology. This becomes relevant as soon as
system underlying a time series is ‘‘excited’’ beyond t
simple bifurcations, so that the geometrical informati
about the shape of the attractor, or the motion on it, is
longer available. This is also true in the case of a stocha
dynamical system, where noise can make it impossible
reconstruct the geometrical information@12#. Moreover, tra-
jectories and the geometry of the flowon the attractor are
well defined in the case of a deterministic system, in cont
to the case of a stochastic dynamics.

Bearing that in mind, we have developed a novel a
proach based on the study of the differentiability of the na
ral measure. The statistical character of our methodolog
twofold. The first one concerns the use of the natural~or
physical! measure. Differentiability of this invariant measu
will be considered in the direction of the evolution, that
along any typical trajectory. In this way, ‘‘smoothness’’
the trajectoryand measure are considered in a single st
PRE 621063-651X/2000/62~3!/3419~10!/$15.00
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This is a general result of dissipative systems, regardles
its application to time series analysis. The second one is
use of statistics for analyzing mathematical properties@13#,
which allow us to test the differentiability of the measure
a statistical sense. In this way we can extend our method
signal analysis.

The procedure is based upon a formula that will be
rived in Sec. II, and that will allow us to discriminate be
tween deterministic and stochastic behaviors. This prob
was tackled by us in@14#, whereas the basic idea of th
methodology was proposed in@15,16#.

The paper is organized as follows. Section II is devoted
the mathematical background of our approach. At the end
the section we have included a brief summary of the c
cepts introduced in this section. This is addressed to the
inclined mathematical reader, which can skip most of
mathematical details given in the section. In Sec. II A w
introduce the fundamentals of our approach. The extens
to stochastic dynamics is considered in Sec. II B. Gene
concepts about measure projections and time series are
plained in Sec. II C, whereas Sec. II D is devoted to a br
discussion of the statistics of topological properties used
this work. Section III is devoted to discussing the models
which we apply our method and the numerical procedu
followed in each case. We also propose a variant of the
rogation method, partial surrogation, as a way to tune
degree of stochasticity. The results are presented in Sec
The sensitivity of the time derivative of the measure to s
chasticity, the dependence of the results on the embed
dimension, and the application of our approach to mix
time series are illustrated on the models discussed in Sec
We also present a simple test on an experimental time se
like the Belousov–Zhabotinski chemical reaction.

II. THEORETICAL APPROACH

Here we discuss in detail the mathematical background
our method. The natural measure is first defined and
equation of motion that it obeys explicitly given. Then w
show how stochasticity triggers awild behavior of the time
derivative of the natural measure. This is the feature up
which our proposal is based. In order to evaluate quant
3419 ©2000 The American Physical Society
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3420 PRE 62GUILLERMO J. ORTEGA AND ENRIQUE LOUIS
tively this behavior we borrow the method proposed
Pecora, Carroll, and Heagy@13#. In particular we evaluate
~statistically! the continuity of the logarithmic derivative o
the natural measure. Those readers more interested in a
cations may go directly to Sec. II E where the most imp
tant features of the method are highlighted with the aid of
equations discussed hereafter.

A. The natural invariant measure along the trajectory

Consider a dissipative dynamical system described
n-first-order differential equationsẋ5F(x). The correspond-
ing flow f t maps a ‘‘typical’’ initial conditionx0 into x(t)
5 f t(x0) at time t. Once transients are over, the motio
settles over the attractorA.

Given such a system, we can define a probability sp
~measure space! (A,B,m), whereB is thes algebra gener-
ated by the open sets of the invariant setA, and m is an
invariant measure defined over the subsets ofB such that
m:B→(0,1).

Of all the invariant measures which can be defined, o
one is relevant from the point of view of the experimenta
or in computer simulations. This is thenatural invariant
measure, which gives the limiting distribution of almost
starting initial conditions. Using the indicator functio
1B(y)51, if yPBe and 0 otherwise, we can define this me
sure for a setBe(x)5$y:d(x,y)<e% as

m„Be~x!…5 lim
t→`

1

t E0

t

1B„f
t~y0!…dt

for almost ally0 in the basin of attraction. The so-define
measure is invariant in the sense that it remains cons
upon application of the evolution operatorf t,

m„Be~x!…5m~ f t
„Be~x!….

In the present case what we calculate ism(Be„x(t)… along the
trajectory. This means that the evolution operator chan
the point at which the setBe is centered, namely
m(Be„f

t(x)…), leaving unchanged the ballBe . This is the
so–called Lagrangian evolution~see Fig. 1!, that has to be
distinguished from the Liouvillian evolutionm„Be(x(t)…
→ f t(m„Be(x(t…), which contracts the volume along the tr
jectory, as illustrated in Fig. 1.

Calling m„x(t)…5m„Be(x„t…)…, the ‘‘material derivative’’
of the natural measure can be expressed as

dm„x~ t !…

dt
5 ẋ•¹m ~1!

or

dm„x~ t !…

dt
5¹•~mF!2m¹•F. ~2!

Equation~2! only involves partial derivatives ofm„x(t)…
along the trajectory, and since each trajectory in the attra
is contained in the support,m„x(t)… is smooth along any
trajectory, and is therefore well defined. It is known that
axiom A systems, hyperbolic and with a dense set of perio
orbits, it is possible to decompose the tangent bundle at e
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xPA in two linear subspaces; stable and unstable. It is a
possible to define a measure in these systems, known
Sinai–Ruelle–Bowen~SRB! which have the property of be
ing smooth along the unstable manifold@9#, due fundamen-
tally to the stretching of the trajectories. On the other side
is expected to have a wild behavior along the stable dir
tion. In the present case, considering that Eq.~2! only in-
volves derivatives along the trajectory and that in this dir
tion no expansion or compression of the flux occurs~the
associated Lyapunov exponent is equal to zero!, we expect a
smooth behavior of the measure.

B. Stochastic dynamics

Consider now a stochastic dissipative dynamical sys
with additive noise, described byn-first-order differential
equations

ẋ5F~x!1hG~ t !, ~3!

whereh.0 is a small number~noise intensity! andG(t) is a
vector of independently and identically distributed rando
Gaussian variables, of zero mean and correlati
^Gi(t)Gj (t8)&5d i j d(t2t8). A physical system will nor-
mally have a small levelh of random noise, so that it can b
considered a stochastic process rather than a determin
one. In a computer study, roundoff errors should play
role of the random noise. For suitable noise andh, the sto-
chastic time evolution, Eq.~3!, has a unique stationary mea
surem @9#. This is thenatural ~or physical! invariant mea-
sure defined above.

FIG. 1. Illustrates two alternative evolutions in dissipative sy
tems: Liouvillian evolution ~upper! and Lagrangian evolution
~lower!.
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PRE 62 3421USING TOPOLOGICAL STATISTICS TO DETECT . . .
Inserting Eq.~3! in to Eq. ~1!

dm„x~ t !…

dt
5@F1hG~ t !#•¹m. ~4!

Whenever the vector fieldF(x) can be expressed asF(x)5
2¹f(x)1f(x), with f(x) being orthogonal to the gradien
term and having no divergence, the measure is given
@17,18#:

m~x!5N expS 2
f~x!

h2 D . ~5!

Then, introducing Eq.~5! in to Eq. ~4! we arrive at

d@ ln m„x~ t !…#

dt
5

1

h S 1

h
uF~x!u21G~ t !•F~x! D . ~6!

In Sec. II A we discussed the smoothness of the mea
along the trajectory for a deterministic system, at least in
case where there exists a SRB measure. In the present
that is, a stochastic process, it is possible to define a un
stationary measure that will tend to the SRB forh→0. This
is the Kolmogorov measure@9#. At each time step of the
evolution, we add some noise~of amplitudeh). If we repeat
these operations~evolving by time evolution and putting
some noise! again and again then we will get an invaria
measure which is smooth along the unstable direction. T
is because the deterministic part of the time evolution w
improve the continuity of the density in the unstable dire
tion by stretching, and roughening it in the other directio
due to contraction. Thus, in the zero-noise limith→0 we
will get a measurem that satisfies SRB conditions.

Equation~6! provides an alternative tool to investigate t
findings of @4#, according to which smoothness in pha
space implies determinism in the time series. For weak n
levels, the first term of the right hand side of Eq.~6! is
dominant over the second term. In this case, smoothnes
phase space implies ‘‘continuity’’ in the left hand side of E
~6!, or differentiability of the measure along the trajecto
On the other hand, in the case of strong noise levels,
second term is the dominant one and a wild behavior in
measure must be expected. This is so because the v
G(t) is uncorrelated with the actual position in the pha
space. Although Eq.~6! was derived for a vector field obey
ing some restrictions~see above!, our numerical results indi-
cate that it can be applied to more general systems.

C. Time series and measure projection

In the case where dynamical invariants are to be estim
from the knowledge of a single observable, we can rely up
Takens’ Delay Coordinate Map Theorem@19#. According to
it, the structure of the attractor~including differential infor-
mation! can be preserved by using delay coordinate m
@20#, as long as the embedding dimensionm is large enough
to fully unfold the attractor structure. Furthermore, the Fr
tal Whitney Embedding Prevalence Theorem@21# tells us
that almost every smooth map will be an embedding~one-
to-one and differential structure preserving! provided that
m.2D, whereD is the box-counting dimension of the a
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tractor. However, as shown in@22,23#, when dealing with
functions of the measure, embedding dimensions gre
than the correlation dimension are enough.

From the statistical point of view, we must ask how t
embedding process in the measure space (A,B) is associated
with the attractorA. That is, if m is a measure inRn and
f:Rn→Rm is a function, we will have a projected orin-
duced measuremp5f(m) over a subsetSPRm, where
f(m)(S)5m„f21(S)…. This is important because we are a
tually transforming the measure in the embedding proce
Most of the existing literature is related to projections a
reconstructions of the invariants sets and the dimension
the corresponding probability measures@24–26#. In our case,
if m is the physical measure describing the original syst
(m is carried by an attractor in phase space! then the points
in the reconstructed space are equidistributed with respe
the projected measuremp @9# ~except for particular case
avoided explicitly by the embedding theorems@21#!. This is
a sufficient condition that allows us to extract informatio
about the original system working in its corresponding p
jection.

If we have a time series, we can construct
m-dimensional vector

x̄i5~xi ,xi 1t , . . . ,xi 1(m21)•t!,

where t is the time delay, chosen by one of the standa
methods@8#. Then, from a single set of observations, mul
variate vectors inm-dimensional space are used to trace o
the orbits of the system. Figure 2 shows the concept of
reconstruction method. Explicitly shown is the reconstru
tion of the measure carried by the attractormp .

D. Statistics of topological properties

Taken’s theorem@19#, and its sequels, give a rigorou
justification for state space reconstruction. The essence o
mathematical proof is that the trajectory formed from t
time series is diffeomorphically related to the actual pha
space trajectory of the dynamical system. In order to test
mathematical properties embodied in the diffeomorfism, t
is, continuity, differentiability, inverse differentiability and
injectivity, Pecora, Carroll, and Heagy@13# have developed a
set of statistics intended to test quantitatively these prop
ties. Their algorithms are of general use and can in partic
be applied to test topological properties in any pair of sets

FIG. 2. Scheme followed to analyze a dynamical system an
calculate the natural measuremp on the reconstructed space.
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3422 PRE 62GUILLERMO J. ORTEGA AND ENRIQUE LOUIS
points. We will take advantage of this procedure by imp
menting the aforementioned algorithms to test numeric
the continuity of the logarithmic derivative of the measu
along the trajectory. Basically, the method is intended
evaluate, in terms of probability or confidence leve
whether two data sets are related by a mapping having
continuity property: A functionf is said to be continuous at
point x0 if ;e.0, 'd.0 such thatix2x0i,d⇒i f (x)
2 f (x0)i,e. The results are tested against the null hypo
esis, specifically, the case in which no functional relat
between points along the trajectory and the measure ex
This is done by means of the statistics proposed by Pec
Carroll, and Heagy@13#

QC0~e!5
1

np
(
j 51

np

QC0~e, j ! ~7!

and

QC0~e, j !512
pj

pmax
, ~8!

wherepj is the probability that all of the points in thed set,
around the point xjPx(t), fall in the e set around
d ln m(xj )/dt. The likelihood that this will happen must b
relative to the most likely event under the null hypothes
pmax ~see@13#!. WhenQC0(e, j )'1 we can confidently re-
ject the null hypothesis, and assume that there exists a
tinuous function. As in the work of Pecora, Carroll, an
Heagy@13# thee scale is relative to the standard deviation
the density time series, and thus,eP@0,1#. Plots ofQC0(e)
vs e can be used to quantify the degree of statistical co
nuity of a given function. In order to characterize the con
nuity statistics by means of a single parameter we have
calculated

u5E
0

1

QC0~e!de. ~9!

The limiting values ofu, namely, 0 and 1, correspond to
strongly discontinuous and a fully continuous function,
spectively.

E. Summary

A naive test to quantify noise in signals is to check ho
smooth they are. As long as more noise contaminates
signal, the more discontinuous it will become. This is t
case for example of additive noise, e.g., noise added to
signal. However, this is by no means a general rule.
instance, intrinsic noise, that is, noise added in the equa
of motion, is not expected to affect the smoothness of
signal. This can be clearly seen in the case of surrogate
series: two time series~the original series and its surrogat!
having the same correlation structure, may have very dif
ent underlying dynamics, i.e., one deterministic and the o
stochastic. We can overcome the above drawback by u
the trajectory of the system, instead of a single variab
Smoothness or continuity of the trajectory in phase space
been used before@2# in this context. What we propose here
to use the distribution of points on the trajectory~or the
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natural measure! as a way to evaluate the the degree of no
in the system. Our proposal is based upon Eq.~6!. This equa-
tion tells us that the amount of noise present in the system
directly related to the differentiability of the natural measu
evaluated along a typical trajectory. The noisier the system
the less differentiable it becomes. It remains a question
how to apply a fundamental analysis concept, like differe
tiability, to a magnitude defined numerically. The ‘‘topolog
cal statistics’’ tools developed by Pecora, Carroll, and Hea
@13# were helpful. They were devised to evaluate in a sta
tical fashion topological properties of functions. Equation~8!
is the statistics used to test, against the null hypothesis,
degree of continuity of our function. As long as this statis
approaches unity we are confident that we have a continu
function. We should note that we have evaluated the co
nuity of the numerical derivative of the measure, which
equivalent to test differentiability, a computationally eas
procedure. Continuity is directly related to the resoluti
with which we are looking at the function, that ise, so the
statistics is actuallye dependentQC0(e). In order to provide
us with an overall continuity test, we summed up over t
whole range ofe obtaining a single parameteru @see Eq.~9!#
which we use hereafter to characterize continuity.

III. MODELS AND NUMERICAL PROCEDURES

Here we discuss the various stochastic dynamical syst
on which we have investigated the efficiency of our a
proach. The numerical procedures followed to reconstr
the space from time series related to some of the coordin
of those models and to evaluate the statistical differentia
ity of the natural measure are also described. We also dis
a variant of the surrogation process which consists of p
ducing a partially surrogate series. The method is a way
vary the degree of stochasticity of the time series.

A. The stochastic Van der Pol oscillator

The simplest case in which we can apply our ideas is i
nonlinear oscillator. We have used the Van der Pol~VdP!
oscillator @27# with an additive stochastic term

ẋ5y1hG1 ,
~10!

ẏ52~x221!y2x1hG2 .

The parameterh represents the noise level, andGi(t) are
uncorrelated Gaussian noises, such thatGi(t)P normal~0,
s), zero mean and standard deviations. Without loss of
generality we takeh51, and tune the degree of noise on
by the standard deviations.

Numerical integration was carried out by means of
Euler algorithm. 20000 data points have been generated.
ing thex coordinate as our ‘‘experimental’’ time series, w
have made a reconstruction with an embedding dimensio
the range 2–20, and at lag of 10~in sampling units!. Every
reconstruction has been rescaled to the unit hyper-squar

Density time series have been obtained for each rec
struction. Starting with the first point in the reconstruct
phase space, we follow the trajectory recording the densit
points around each of the trajectory’s points. In order to
timate this density, we have used the Epanechnikov ke
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PRE 62 3423USING TOPOLOGICAL STATISTICS TO DETECT . . .
@28#, which, roughly speaking,‘‘weighs’’ the points accord
ing to its distance to the center. This is preferable to
Gaussian kernel, which is of infinite support~and therefore
has a lower computational efficiency! and the ‘‘square’’ ker-
nel which gives equal status to the different points in the b
around the reference point. A parameter that has to be ch
carefully is the ball radius used to estimate the density. If
radius is too small, the low density regions will be practica
depopulated and the measure will be underestimated. On
other hand, if the radius is too big, the estimation will ca
ture points which are not really part of the neighborhood
the reference point. Of course, the ball radius is a function
the data points being used in the reconstruction process
must be chosen according to this fact. We have used a ra
of the ball of 5% of the total attractor extent. In evaluati
the continuity statistics, we averageQC0(e, j ) overnp points
@see Eq.~6!# randomly distributed in the trajectory, typicall
10% of the total record.

Figure 3 shows a typical density time series from thex
coordinate of the VdP oscillator. Albeit qualitative, th
smooth behavior of this density along the trajectory is read
noted.

B. The stochastic Lorenz system

The VdP oscillator will allow us to get a closer look at th
procedure we are implementing. However, a nonlinear os
lator is a somewhat trivial example and we want to apply
method to more complicated cases. In fact, the ultimate
jective of the methodology is to discriminate random beh
ior from a deterministic one, and this is specially importa
in the case of chaotic behavior.

The Lorenz system@29# with an additive stochastic term
is an adequate choice. The related system of differen
equations can be written as

ẋ52sx1sy1hG1 ,

FIG. 3. Typical records of thex coordinate~continuous line! and
of the natural measure~broken line! time series~in arbitrary units!
from the x coordinate of the Van der Pol oscillator. The resu
correspond to the parameters given in the text whithout stocha
term, and an embedding dimension of 4.
e
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ẏ52y1rx2xz1hG2 ,
~11!

ż52bz1xy1hG3 .

The parameters used in the calculations are;s510.0, r
528.0 y, b52.66, which give chaotic behavior in the ca
h50. Gi(t) andh were defined above. When not specifie
the results for the Lorenz system discussed in the follow
section were obtained for an embedding dimension of
which is greater than the correlation dimension of the Lore
system.

Numerical integration of the Lorenz system was carr
out by means of the Euler method. The time integration s
was 0.01. Time series with 16 384 data points and their
spective surrogates were subsequently generated. The re
struction was performed by the usual time–delay meth
@19–21#, with a time delay given by the first zero of th
autocorrelation estimate~10 in units of the integration step!
on an embedded phase space of dimension 3. The na
measurem„x(t)… along the trajectory was calculated b
means of the Epanechnikov kernel density estimator@28#
with an sphere of radius 5% of the attractor extent. As in
VdP oscillator the continuity statistics was evaluated inclu
ing up to 10% of the points in a given record.

The sensitivity of the time derivative of the measure
stochasticity is illustrated in Fig. 4. This figure shows th
whereas the surrogate of thex coordinate time series is a
‘‘smooth’’ as the original series, the time derivative of th
logarithm of the measure is much more spiked in the su
gate than in the original series.

tic

FIG. 4. Illustrates the differences between using a coordinat
the time derivative of the natural measure in the evaluation of
continuity statistics. The results correspond to the Lorenz sys
without noise:~a! x coordinate~broken line! and its 100% surrogate
~continuous line!, ~b! derivative of the reconstructed natural me
sure~broken line! from the x coordinate and from thex surrogate
surrogate~continuous line!.
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C. The Mackey–Glass model

In order to investigate the effects of the embedding
mension we have also considered the high dimensional
tem introduced in@30#. The dynamical system is describe
by means of the following delay–differential equation:

ẋ5
ax~ t2d

11x~ t2d!c
2bx~ t !. ~12!

This equation has been proposed to model nonlinear fe
back control in physiology. We use the set of parameters
gives an attractor dimension of'7.5 @2#, namely,a50.2,
b50.1, c510, andd5100. The resulting time series wer
analyzed with a time delay given by the first zero of t
autocorrelation estimate, and the measure was evaluate
spheres of radius 10% of the attractor extent and the co
nuity statistics with 10% of the points in the total record.

D. Partial surrogation

The surrogation process is a well established metho
the context of nonlinear time series analysis@31,32#. In typi-
cal applications a single time series is available. From
time series, an ensemble of the so-called surrogate serie
generated that mimic certain properties of the original. F
example, by simply scrambling the temporal order of t
points in the original, one obtain surrogate time series wh
preserve the mean, variance, etc. One of the most pop
methods of producing surrogate time series consists of s
fling the phases in the Fourier transform of the original d
set @31#. In this way, each value of the Fourier transform
the original data is multiplied by a random phase exp(if),
with fP random@0,2p#. ~In order to get a real time serie
in the antitransformation we multiply symmetrically with re
spect to the center of the transform.! The procedure generate
a new time series with the autocorrelation structure of
original. Here we propose to introduce an additional fac
exp(ifa), with aP@0,1#. This factor allows us to control the
degree of stochasticity by tuning the parametera.

IV. RESULTS

A. Sensitivity of the time derivative of the measure to
stochasticity

In order to test the efficiency of the approach propos
here we have first evaluated the continuity statistics eithe
a coordinate or on the time derivative of the natural meas
time series of the stochastic VdP oscillator. Figure 5 sho
the continuity statistics for thex coordinate and for the time
derivative of the reconstructed natural measure with
without noise. There is almost no modification in the sta
tics of the coordinate upon noise addition. However, the
tistics of the density time series reflects very clearly the pr
ence of the stochastic term. This illustrates the efficiency
novelty of our approach and supports its application to m
complex cases. We must remark that we are using the c
monly named ‘‘dynamical’’ noise, that is, a stochastic te
added in the dynamical equations, instead of the ‘‘meas
ment’’ noise, which is added after the ‘‘clean’’ integratio
step. Preliminary results shows that an efficient method
discriminate both types of noise, can be achieved by us
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the continuity statistics over the density and the coordina
but this deserve further research, and eventually will be p
lished elsewhere.

The results for the continuity statistics of the time deriv
tive of the reconstructed measure from thex coordinate of
the Lorenz system are illustrated in Fig. 6. The results of F
6~a! show that the time derivative of the measure in the ori
nal series is ‘‘more continuous’’~in a statistical sense! than

FIG. 5. Van der Pol oscillator: continuity statistics@see Eq.~7!#
for thex coordinate~lower frame! and for the time derivative of the
measure along the trajectory obtained from thex coordinate~upper
frame!. Results for the deterministic system~broken curves! and the
stochastic system withs50.06 ~continuous curves! are shown.

FIG. 6. Continuity statistics@see Eq.~7!# for the time derivative
of the measure along the reconstructed trajectory from thex coor-
dinate of the Lorenz system.~a! Results for the original time series
and for the series partially~10%! or totally surrogated~100%!, and
a combination of both.~b! Results for the Lorenz system with nois
@see Eq.~8!# and for its surrogate series.
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its surrogate. Partial surrogation~10%! decreases the degre
of continuity of the time derivative of the measure in
extent lower than total surrogation, as expected. On the o
hand, the results show that the continuity of the totally s
rogated series shows almost no dependence on whether
been derived from the original series or from a partially s
rogated series~10% surrogated!.

The results for the stochastic Lorenz system reported
Fig. 6~b! clearly show that the stochastic terms significan
decrease the statistical continuity of the time derivative
the measure. Surrogation of the stochastic series produc
further decrease of continuity, indicating that the series s
has some degree of determinism. The degree of stochas
of a time series can be quantified by calculating the integ
of the continuity statistics as defined in Eq.~8!. Figure 7~a!
shows how steeplyu decreases with the percentage of s
rogation. Similarly,u decreases with the standard deviati
of the Gaussian noise in the stochastic Lorenz system@Fig.
7~b!#, as expected. Thus, the magnitudeu can be used to
evaluate the relative stochasticities of a set of experime
time series.

B. Dependence on the embedding dimension

A point of crucial relevance is how the above resu
change with the embedding dimensionm. We have investi-
gated this question on the Lorenz system and on the hi
dimensional system discussed in Sec. III D@30#. The results
for the Lorenz system depicted in Fig. 8~a! show thatu de-
creases with the embedding dimension. This is a con
quence of working with a fixed sphere radius for allm and of
the numerical noise that should increase withm. The de-
crease ofu is stronger in the surrogate series, although i
likely that the difference between the two should decre
for large enoughm. In any case, the difference inu between
the original and the surrogate series changes only from 0
to 0.49 whenm is varied in the range 3–10. The behavior
u in the high–dimensional system is far more intricate@see
Fig. 8~b!#. Form well below the attractor dimension the me
sure for the surrogate series seems to be more contin
than that for the original series. The reason for this rather
behavior has to be found in the heavy crossing of trajecto
that occur atm far below the attractor dimension@8#. In those
cases, surrogation seems to have a smoothing effect. Ins

FIG. 7. Integral of the continuity statistics@as defined in Eq.~8!#
for time series derived from the Lorenz system. The results co
spond to:~a! partially randomized series with increasing degr
~percentage! of randomization and~b! stochastic Lorenz system
with increasing standard deviation of the Gaussian noise in Eq.~8!.
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for m.7 the behavior is similar to that of the Lorenz syste
although the difference between the original and the su
gated records is substantially smaller. This points to furt
study that is actually in progress.

Figure 9 illustrates the dependence of the continuity s
tistics of the measure on the embedding dimensionm for the
stochastic VdP oscillator. In this case the simplicity of t
attractor gives an almost null dependence onm for no noise
or very low noise levels. When the noise is increased
behavior is in line with that found in the Lorenz system
namely, a decrease ofu asm increases. This dependence o
m is more noticeable the greater the noise level.

The study of the dependence of the continuity statistics
the measure derivative on the embedding dimension invo
numerical difficulties that deserve some comments. In
case of low enough embedding dimension and mode

e-

FIG. 8. Integral of the continuity statistics@see Eq.~8!# as a
function of the embedding dimension for time series~filled sym-
bols!, and their surrogates~empty symbols!, derived from:~a! the
Lorenz system and~b! the high–dimensional system proposed
@30#. The error bars in the results for the surrogate series acc
for averages over five realizations.

FIG. 9. Integral of the continuity statistics@see Eq.~8!# as a
function of the embedding dimension for time series derived fr
the the x coordinate of the Van der Pol oscillator with variou
degrees of noise:s50 ~filled circles!, 0.01 ~open circles!, 0.03
~filled squares!, 0.06 ~open squares!, and 0.09~filled triangles!.
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number of data points, the estimation can be achieved c
fidently for almost all the points in the trajectory. Of cours
‘‘moderate’’ and ‘‘long enough’’ are terms that depend o
the attractor dimension. We think that the same criteria
lowed, to get for example a reliable estimation of the cor
lation dimension@8#, apply in this case. In our approach w
have introduced noise explicitly, adding another factor to
considered in the estimation step. As it is well known,
‘‘extra’’ dimensions are included in the embedding proce
noise populates them more or less uniformly. This is s
cially problematic in the case of ‘‘simple’’ systems, like th
VdP oscillator, as the trajectory in a stochastic oscillator m
‘‘wander’’ far from the zero-noise limit cycle. In these ex
cursions, the measure swept by the trajectory is unavoid
constant, because no other points are in the neighborhoo
the evolution, except those which are time correlated. In s
a case, a constant measure results, and thus a high val
the continuity statistics. This effect is more noticeable as
embedding dimension is increased, because ‘‘more’’ spac
available~see Fig. 10!.

C. Application to mixed time series

A distinctive feature of our method is the possibility
using it in different ranges of a given time series. In this w
we can examine short records and evaluate their stocha
ity. Bearing this in mind we have devised the following e
ample: Suppose we have a time series which is half de
ministic and half stochastic. Could our method discrimin
both behaviors in the same time series?. In order to ans
this question, we have generated a single time series~16 384
points! with the first half coming from thex coordinate of the
deterministic Lorenz system, and the second half com
from its surrogate~100% randomization! time series. We
have applied the continuity statistics over four regions in
time derivative of the density record~two randomly selected
in the first half and two in the second half!. Figure 11 shows
the results. It is then clear that the statistics utilized here
discriminate stochastic from deterministic behavior. Figu
11 also shows the statistic for the whole time series~same
number of reference points randomly selected along the t
series!. The results are midway between those for the s
chastic and deterministic ranges.

FIG. 10. Measure estimate in the case of a stochastic Van
Pol oscilator (x coordinate! for a embedding dimension of 19, an
s50.5.
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As another example of the use of our methodology
have investigated the effect of a noise burst in the VdP
cillator. The dynamic equations are rewritten as

ẋ5y1A~ t !hG1 ,
~13!

ẏ52~x221!y2x1A~ t !hG2 ,

where A(t)51 if t1,t,t2 and 0 otherwise. The interva
@ t1 ,t2# is a small interval where we ‘‘turn on’’ the stochast
term. The idea behind this system is to test the capabilitie
the method to detect the noise introduced. Using 20 000 d
points, we have used 500 consecutive points with the
chastic term added. In Fig. 12 we show a typical time se
~and the measure time derivative! where noise has bee
turned on in the time interval 10 000–10 500, with a stren
of s50.05. Figure 13 shows Pecora, Carroll, and Hea
@13# statistics applied to five regions of the whole series, o

er FIG. 11. Continuity statistics for the time derivative of the me
sure corresponding to thex coordinate of the Lorenz system. Th
time series was formed by joining the original time series~first half!
to its fully randomized series~second half!.

FIG. 12. x coordinate~broken line! and derivative of the natura
measure~continuous line! time series of the Van der Pol oscillato
in which a noisy burst, ofs50.05 has been introduced in the tim
interval 10 000–10 500.
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of them being the stochastic region. Again, our meth
clearly discriminates between noisy and clean regions.

D. Application to experimental time series

In order to test our method in actual experimental tim
series, we have used the data set from the Belus
Zhabotinski~BZ! chemical reaction@33#. As shown by those
authors the apparently random behavior of the amplitude
the concentration of bromide ions can in fact be explained
deterministic laws. We will use here our approach to confi
the above finding.

Using the bromide concentration time series, as in
work of Roux, Simoyi, and Swinney@33# we repeat the pro-
cedure explained above. We have used at530 ~in sampling
units! for the reconstruction and an embedding dimension
4. Figure 14 shows the continuity statistics for both the ti
derivative of the reconstructed measure using the BZ t
series and for its 100% surrogate. The large difference
tween the two and the rather high value ofQC0 confirm our
proposal in the sense that one can explain the behavio
this record as the output of a deterministic dynamical syst

V. CONCLUDING REMARKS

In brief, we have proposed a method to identify determ
ism in time series, which exploits the continuity of the log
rithmic time derivative of the natural measure along the t
jectory, that is, its differentiability. The method is bas
upon a formula which explicitly shows the sensitivity of th
measure to stochasticity. In the present work we h
adapted the statistical method of Pecora, Carroll, and He
@13# to investigate the continuity of the time derivative of th
measure. Results of partially surrogated series and serie
rived from two stochastic dynamical systems and a hig
dimensional system, clearly illustrate the suitability of t
present method to the problem at hand. As we have sho

FIG. 13. Continuity statistics for the time series of Fig. 1
applied to five regions of the series one of which is the stocha
region ~broken line!. The noise intensity iss50.05.
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the method is very easily applied to any kind of time seri
from the simplest one, as is the case of limit cycle oscillato
to the high–dimensional cases. Given a time series, and o
done the standard reconstruction process, obtaining the
sity ~or its time derivative! is a straightforward procedure
Then, one can use the Pecora, Carroll, and Heagy appr
over the whole time series or in selected pieces of it.
warning against a blind application of the method is in ord
particularly in what concerns the evaluation of the continu
of the measure time derivative. A careful inspection of t
density time series must be done before any further opera
is performed.

The dependence of the continuity statistics on the emb
ding dimension in low- and high–dimensional systems, in
cate that applications to real~experimental! time series
would eventually require a thorough investigation of th
point in each particular case, as is common in time se
analysis. In any case, the fact that the method works rea
ably well on short time series, supports its usefulness for
analysis of experimental series. We have shown this i
simple case as it is the BZ reaction, confirming previo
findings.

In a broader sense, the application of continuity statis
over the density time series is a new aspect of the possi
ties offered by the Lagrangian measures@16#. As we have
shown previously, the use of more traditional tools on t
density, such as Fourier transforms or histograms, may h
in extracting new information on the underlying dynamic
system.
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ic FIG. 14. Continuity statistics for the BZ reaction time seri
~solid line! and its surrogate~broken line!.



y

v.

e,

a

ol.

aw,

D

ett.

D.

3428 PRE 62GUILLERMO J. ORTEGA AND ENRIQUE LOUIS
@1# P. Grassberger and I. Procaccia, Phys. Rev. Lett.50, 346
~1983!.

@2# D.T. Kaplan and L. Glass, Phys. Rev. Lett.68~4!, 427 ~1992!;
Physica D64, 431 ~1993!.

@3# R. Wayland, D. Bromley, D. Pickett, and A. Passamante, Ph
Rev. Lett.70~3!, 580 ~1993!.

@4# L.W. Salvino and R. Cawley, Phys. Rev. Lett.73~8!, 1091
~1994!.

@5# G. Sugihara and R. May, Nature~London! 344, 734 ~1990!.
@6# A. Osborne and A. Provenzale, Physica D35, 357 ~1989!.
@7# J. Theiler, Phys. Lett. A155, 480 ~1991!.
@8# H. Abarbanel, R. Brown, J. Sidorowich, and L. Tsimring, Re

Mod. Phys.65~4!, 1331~1993!.
@9# J.-P. Eckmann and D. Ruelle, Rev. Mod. Phys.57~3!, 617

~1985!.
@10# A. Lasota and M. Mackey,Probabilistic Properties of Deter-

ministic Systems~Cambridge University Press, Cambridg
1985!.

@11# R. Gilmore, Rev. Mod. Phys.70~4!, 1455~1998!.
@12# M. Casdagli, S. Eubank, D. Farmer, and J. Gibson, Physic

51, 52 ~1991!.
@13# L. Pecora, T. Carroll, and J. Heagy, Phys. Rev. E52~4!, 3420

~1995!.
@14# G. Ortega and E. Louis, Phys. Rev. Lett.81, 4345~1998!.
@15# G. Ortega, Phys. Lett. A209, 351 ~1995!.
@16# G. Ortega, Phys. Rev. Lett.77~2!, 259 ~1996!.
@17# R. Graham and T. Te´l, Phys. Rev. Lett.52~1!, 9 ~1984!.
@18# M. San Miguel and R. Toral, inInstabilities and Nonequilib-
s.

D

rium Structures, edited by E. Tirapegui~Kluwer Academic,
1997! Vol. IV.

@19# F. Takens, inDynamical Systems and Turbulence, edited by D.
A. Rand and L. S. Young, Lecture Notes in Mathematics, V
898 ~Springer, Berlin, 1981!.

@20# N.H. Packard, J.P. Crutchfield, J.D. Farmer, and R.S. Sh
Phys. Rev. Lett.45, 712 ~1980!.

@21# T. Sauer, J. Yorke, and M. Casdagli, J. Stat. Phys.65~3/4!, 579
~1991!.

@22# M. Ding, C. Grebogi, E. Ott, T. Sauer, and J. Yorke, Physica
69, 404 ~1993!.

@23# C. Schroer, T. Sauer, E. Ott, and J. Yorke, Phys. Rev. L
80~7!, 1410~1998!.

@24# R. Kaufman, Mathematika15, 153 ~1968!.
@25# P. Mattila, Ann. Acad. Sci. Fenn., Ser. AI: Math.1, 227

~1975!.
@26# T. Sauer and J. Yorke, Ergodic Th. Dyn. Syst.17, 941~1997!.
@27# B. Van der Pol and J. Van der Mark, Philos. Mag.6, 763

~1928!.
@28# V.A. Epanechnikov, Theor. Probab. Appl.14, 153 ~1969!.
@29# E. Lorenz, J. Atmos. Sci.20, 130 ~1963!.
@30# M.C. Mackey and L. Glass, Science197, 287 ~1977!.
@31# J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J.

Farmer, Physica D58, 77 ~1992!.
@32# T. Schreiber, Phys. Rev. Lett.80, 2105~1998!.
@33# J.C. Roux, R.H. Simoyi, and H.L. Swinney, Physica D8, 257

~1983!.


